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Finite-rank constraints on linear flows and the
Davey-Stewartson equation
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Departamento de Fisica Tedrica, Universidad Complutense, E28040-Madrid, Spain

Received 5 QOctober 1994

Abstract. Finite-rank constraints for the right-derivatives of certain automorphisms solving
the heat equation imply the Davey-Stewartson system. Solutions comprising Wronskian and
Grammian determinants are found and the real reductions for the Davey-Stewartson I and
Davey~Stewartson Il are considered.

1. Introduction

In this work we develop a method for the construction of solutions of the two-component
Kadomtsev—Petviashvili (KP) or Davey-Stewartson (DS) equation. We shall alsc treat its
two real reductions DSI and DSI, in their focusing and defocusing cases which correspond
to elliptic and hyperbolic second-order differential operators respectively. Generalizations
to the multicomponent case are straightforward.

The solutions in which we are interested can be described functionally in terms of the
heat equation in one dimension with complex variables, which is replaced by the Schrédinger
equation when dealing with the real reductions, Some of the solutions were obtained,
apparently by direct computation in Freeman et a! (1990}, Hietarinta and Hirota (1990)
and Nimmo (1992}, as a ‘double’ Wronskian for the ps system—those in Hietarinta and
Hirota (1990) were reduced to the dromion solutions of the DS equation—and in Gilson
and Nimmo (1991) as a ‘double” Grammian for the DSI equation, formed with solutions of
the Schrodinger equation. In Degasperis (1990) the spectral analysis of Fokas and Santini
{1989, 1990) and Santini (1990) was used to obtain, for the first time, the ‘double’ Grammian
solutions of DSI.

In Guil et al (1994) we were able to construct the Wronskian expressions for solutions of
the KP equation throngh a dimensional reduction of a XP equation in an infinite dimensional
space. The procedure described there reproduces in the infinite dimensional case the
well known connection between the heat and Burgers equations. The same Hopf—Cole
transformation puts, as in the Burgers case, the heat hierarchy in the group into the KP
hierarchy in the corresponding Lie algebra. To obtain the scalar KP equation only, one
selects the appropriate initial conditions. Besides Wronskians we have derived the solutions
of the KP given by Grammian determinants in Mikae e al (1990), Nakamura (1989) and
Zakharov and Shabat (1974) from this formulation.

It is the purpose of this work to reproduce for the DS equation the construction given
for the KP equation. To solve the easy part of the problem one takes as the starting point the
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two-dimensional heat equation (or n-dimensional if one wants the n-component KP) subject
to certain initial conditions (see equations (3.7)) which yield the desired DS system. The
difficulty in reducing this to the DSI or DSII equations appears in selecting the correct initial
conditions for these real cases. We have solved the problem for the solutions mentioned
hefore, those given as ‘double” Wronskians, ‘double’ Grammians or a combination of them
(henceforth simply Wronskians and Grammians). The Wronskian—-Grammian solutions for
the DSII equation obtained in this paper are, to the authors’ knowledge, new.

The organization and contents of the paper are as follows. In section 2 we describe
the geometric origin of the initial conditions for the n-component KP equation, which is
ultimately related to a problem of separation of vartables. The connection of the DS system
with the heat equation is given in section 3 where we obtain general formulae expressing
its solutions as determinants or quotients of them. We derive, in section 4, solutions in
the form of Grammian and Wronskian determinants and present finally, in section 5, an
effective procedure to reduce these solutions to the DSI and DSI equations.

2. Splitiing the zero-curvature condition: the Darboux coefficients

The integrable nonlinear equations we shall consider admit a simple description in terms of
the theory of linear flows in linear spaces V.

For a collection of operator-valued functions M;{x, ..., x;) € L(V) depending on the
n complex variables {x;}i=1,.., we define the linear flows

av

-———=M,"~p' I'=I,...,ﬂ

ax,-
where ¥(x;,...,x;) € V. The compatibility conditions among them result in the zero-
curvature equations

uM; — M+ MMy — M;M; =0 (2.1

where 8; = 9/dx;, which are a set of nonlinear partial-differential equations for the operators
M;. On the other hand, given a family of linear operators M, satisfying equations (2.1) one
knows that locally there exists an automorphism ¢ (x1, ..., x;) € GL(V) such that

My=8y -y (22)
Equations (2.1) can be written as
&M+ M;M; = 8; M; + M; M;
from which we obtain a particular solution of (2.1} by imposing
uM; -+ M;M; =0 P# . (2.3)
From equations (2.3) one deduces the compatibility conditions
(8:8; — 8;8)M; = 0

and consequently equations (2.3) form a closed system.
For the antomorphism ¥ we have

Proposition 1. The collection of operators M; =¥ -y~ i =1,....m ¥{x|,..., %) €
GL{V), solves equation (2.3) if and only if

t;’(xlu--a-f‘fn) = ':b‘l(xl)+“'+"!fn(xn)- (2"4)
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Proof. Introducing the expression (2.2) for M; in equation (2.3} one concludes
89 =0 i#J
the solution of which is given in the proposition, a

Thus, system (2.3) represents in L (V) the process of separation of variables in the group
GL(V). To proceed further we consider a linear splitting of V,
V=Vi@& - -aV,
and we require that im M, (x;,...,x,) C V. Associated with this decomposition one has
the representation

"
Mi=Y M,
i=1

where
Mij =My, : V; > V..

Now, we can separate (2.3) into two subsystems, namely
My + MM, =0 i#j

and

9 Mjj + MjMi; =0 L#]. 22)

Observe that equations (2.5) are invariant under the transformation M;; — A, + My,
A; € L(V;). Notice also that the ;s can be taken with their images in V,.

An interesting reduction of this system is obtained once the M;, modulo the invariance
cited in the above paragraph, are requested to belong to the left ideal of finite rank operators.
The simplest case is rank one, if we let ; € V; be the vector expanding the one-dimensional
image, we obtain the representation

{3fMjk+Mjerk=0 i#ji#k j#k

M =Ai+e Qo (2.6
where o;(x1, ..., X,) € V* is a linear functional over V. For the functions
pij = (o, €} @7

we have the following proposition.
Proposition 2. Let p;; be the functions defined in (2.7), then if {M;} as given by
equation (2.6} is a solution of (2.3} then

pij + pupr =0 i, j#£k 2.8

Proof. From equations (2.3) and (2.6) it follows that
gyor; + ot Ap + patly = 0
its contraction with ¢; gives the desired resuit. O

The functions p;; satisfy the equations defining the Darboux coefficients or rotation
coefficients for an n-orthogonal system of curvilinear coordinates. Equations (2.8) are also
the compatibility conditions for the linear system

0k + pijh; =0.
The coefficients #; give the diagonal metric of zero curvature ds* = h U,-h? dxf, o; € {1}

Equations (2.8) constitute a non-trivial system of equations obfained from a trivial one,
namely equations (2.3). The non-trivial task is to find an automorphism, as in equation (2.4},
with its right-derivatives constrained by the expression given in (2.6).
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3. The Davey-Stewartson system: conséruction of solutions

An interesting class of equations connected to equations (2.8} is represented by the
symmetries associated with the Laplacian.

In this section we take n = 2, thus we have only two coordinates xi, X, a splitting
V=V, @&Vz and A, (A2) a linear operator over V| (Vz). The functions py;, paz, Piz2: P2t
of (2.7) satisfy

81 pxn = tapy = —Przpa
therefore p;; admits a potential function, say U, such that
Pii = 3¢U (31)

so that
018U + prapn = 0.
We can add an additional time parameter ¢ by considering the symmetry
oY = Ay (3.2)

where A := 8% 4 82 is the two-dimensional Laplacian. That is, ¥ is a GL{V) valued
solution of the two-dimensional heat equation, its right-derivatives being solutions of

2
M = AM; +2 ) (3 M:)M;. (3.3)
j=1

Now we show that this system is connected with the DS system.

Theorem 1. Let ¥ (x|, x4, 1) be a solution of equation (3.2) with its right-derivatives M|, M»
as in (2.6). Then, the functions py2, pn and U defined in (2.7) and (3.1) satisfy

U + prapu =0 3.4)
& p12 — (87 — 33 p12 — 2pia (3 — 33U =0 (3.5)
3, pa1 -+ (87 — 82y par + 2p2 (8} — 85U = 0. (3.6)

Proof. Taking into account the expression (2.6) from (3.3) one finds

2
Boy = Aoy +2) (3 ppey + BadA) =12
=1

that, upon contraction with ¢; and with the definition of the potential U, gives the desired
result. O

We now proceed to construct the general solution ¥ to equation (3.2) and with right-
derivatives as in (2.6). For this aim the following observation is particularly useful. (Fust
use o;y¥r = B;.)

Proposition 3. The system of equations (3.2), (2.2) and (2.6) is equivalent to
Gy =AY +e @B i=1,2
By = Ay

where 8;(x;, 1) € V* depends only on the coordinate x; and satisfies
3By (xi, 1) = 87Bi(xi, 1) (3.9

(3.7
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Now, define
Yolxt, X2, 7) := exp [A)x1 + Aaxa + (AT + AS)]
and
bi(xi, 1) 1= Yolxy, %2, ) e € Vi,
Then we obtain the following proposition.
Proposition 4. The solution to equations (3.2), (2.2) and (2.6) is given by
Vv=1v0-¢
with an invertible operator
@(x1, X2, 1) = C + 8,7 (By(x1, 1) @ Bi(x1, ) + 85 (balx2, 1) @ Bax2. 1)) (39

where 3~ ! is a primitive commuting with 3;, and C e L(V).

Proof. Equations (3.7) can be written as

G —ADYi=ea®B
where we have used equation (2.4). Therefore,

v = 0, Ci + (8 — A) 7 e ® B) (3.10)
with ¥; = expld;x; + Afr], C; :V = V: and (8 — A,)~! stands for the operator
(8 — A)™! = Y87 5], weset C = Cy + C; and ¢ = vy + 2 to get the desired
result. 0

We define

Ej =¥ +e®@pB —e¢@my
Liji=0+b; @B — b @p

where 1,, §; (x1, x2, 1) € V™" are such that
(i, €;) ={&,b;} =1 i=12

Note that for a given 7; we can take 8; = n;¥p and, if this is the case, then &§; = ¥olij.
Now, we can state the main result of this paper.

Theorem 2. If . as given by equation (3.9), has a determinant then
U =Indetyp (3.11)
piy={Bo b)) = — =2 (3.12)

are a solution of equations (3.4), (3.5) and (3.6).
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Proof. From the relation o = 8; one concludes
e ® 0o = Yoldp - ¢~ Wp "
and hence, if ¢ has a determinant,
&U = py = Tr(Be- ¢7").
Then, up to an additive constant, we obtain for U the expression
U =lIndete.
Since
Ei=[14+¢ ® (@ —n)lY
Gi=ll+b® B —§)le
their determinants are
detd;; = det[1 +¢; ® (o; — ;Y] detyr = p;; detyr
dets;; = det[l +b; ® (Bio™" — 8;)]detp = pydete
from whence the expressions for pjz and pa; follows. [}

Notice that in equation (3.12) the computation of the inverse of ¢ is avoided by the use
of determinants. This is an advantage of determinant-type expressions.

4. Particular solutions of the DS system

Concrete choices for V, A;, ¢; and 8, give different sets of solutions to the DS system.
In this section we will be concerned about two particular families of solutions. First,
we extend the Grammian determinant-type formulae from Mikae ez al (1990), Nakamura
(1989) and Zakharov and Shabat (1974) for solutions of the KP equation to the DS case, and
obtain the same generalization for the solutions of the KP constructed in Chau ez al (1992)
encompassing Wronskians and Grammian determinants. The Wronskian solutions for the
D5 system, that are contained as examples in the formulae given below, were obtained in
Freeman et al (1990} and Nimmo (1992). For the XP case see Freeman and Nimmo (1983)
and Satsuma (1979).

Theorem 3. Denote by W;, i = 1,2, two linear spaces, let s;(x;, 1) € W;, i = 1,2, be
solutions of

3;5,' = —stf

choose ¢;{x;, t) € (W) @ W3)* such that (g;,5) =1 and let o, (x;, t) € (W1 @W)*, i=1,2,
be solutions of

q0; = 8,?0',-.
For any C € L(W; @ W) we define
Q:=C+3 (51 @)+ (52®@ )

and
Oy =P+ 5@ (0 — 5P).
Then,
U =Indet®
_ detfb,-j
Pii= et

is a solution of equations (3.4), (3.5) and (3.6).
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Proof. As V., i=1,2, we take the space of W;-valued sequences
Vi=iym=WaoWao---.
An element in V; is of the form (a,)uz0 with a, € W,. The shift operator A; € L(V}) is
defined as
Ai(@n)rz0 = @nt1)nz0
and we take
Af = Af i = 1, 1.
This choice implies that
by = (s;, — 851, 8751, ..)
where 5; takes values in W;. This follows from the equation &4, = —A;b;. The evolution
of b;: 9;:b; = —32h; implies the same equation for s;.
For the §;’s our choice is
Bi((@n)nzo D (brdnzo) = (01, @) + {ou2, by}
where o;; takes its values in W} and, because §; satisfies (3.8), so does o, = ;1 @ g;2 that
takes values in (W, © Wp)*. A proper C can be taken such that
dety = det P
det &y = det q),’j
and from theorem 2 we finally obtain the desired result. Here §; must be chosen in a similar
way as that used for the g, replacing o; by g,. O

In the finite-dimensional case, dimW; = N;, if we fix two bases B; in W; for i = 1,2
respectively, we can complete the above theorem as follows, Let (s;),,n =0,...,N;—1be
the components of 5; in the basis B;. Define ®f,n =0,..., N2 —1(®5,n=0,...,N;—1)
as the matrix obtained from that corresponding to & by replacing the (N 4 n — 1)th (nth)
row by o) (o2), then:

Proposition 5. For the p;; of theorem 3 one has the expressions

Sl (5i)n det O
P = det @ ‘

Proof. Use the first formula of equation (3.12). 0

To include Wronskian-type expressions in the formulae stated previously we need the
following observation,

Proposition 6. The operator ¥ can be expressed as
M-t
¥ = Z [Z e} ® 3y + Yo(Ci +3,-_'(3£®;¢))]
i=1,2 = 2=0
where
=AM e i=1,2
and
Bi=3"n  &=a"b=(a "
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Proof, From equation (3.10) we formally deduce
i = ¥0,Ci + (1 — A8y e ® 971 B)
which can be written as

Vi =v0,Ci+ ) Alei @' 8.

rz0
For any couple M, M2 of natural numbers we have
M -1
vi= Y Ry +voC+ @ —Aa)E" ey i=12
r=0

Now, the methods in the proof of proposition 4 can be applied to obtain the desired result. O

With this proposition at hand we are able to formulate the following theorem.

Theorem 4. Let 5;(xi, ) be as in theorem 3 and Wi, i = 1,2, an M;-dimensional linear
space with basis {ef}M5". Consider o;(x;, 1} € (W1 @ W, & W, @ Wa)* as in theorem 3
and introduce the map

W:W;@Wl@WZQWg-* W, @ Wy
given by

W= Z e ® d'a;.

n=0.. M -1
i=1,2

Now, we define

O:=W+C+8 (51 @01) + 8 52 ® )

and
O =P — ef’_l ® (&jM’_Io;,- - BIM'O',).
Then,
= Indet &
det q)jj
Pu= det P

is a solution of equations (3.4), (3.5} and (3.6).

Proof. For the linear space V; we take
V=W Ly

where W; is an M;-dimensional linear space with basis {e/
defined by

}¥~1. The operators A; are

AT @ (@ndnz0) = AT @ (Ail@n)nzo + Wou;)
where W = ZnM 01 Wpel, A; is the shift operator in W, and u; € £y, is a constant sequence.
Observe that u; = A,e, and that A; acts on £y,. Thus g{0) = Af"‘e,- = u € fy,
and g;(x;,t) € £w. Therefore, applying similar arguments as those used in the proof
of theorem 3 we conclude that

i =00 (s, ~8si, 375, ...).

For the y;, we take P,y vi that has as kernel those sequences in which the first component
is identically zero. An appropriate choice for C is now enough to conclude the truth of the
theorem (with the aid of theorem 2 and proposition 6). O
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There is an intermediate case between the two theorems in this section. Observe that in
the theorem above M, M, are natural numbers, and therefore different from zero. The case
when both are zero is considered in theorem 3. If M, > 0 but M; = 0 then for py; we use
the expressions in theorem 4 (3, = f7) and for pj2 that of theorem 3 (with §; = 8{"‘ Y1)

5. The reductions to DSI and DS

In this section we modify our symmetry to
18,9 = (87 — 7).
So that the DS system reads

83U + prapa =0
id:pr12 — Ap1a — 2p1zAU =0
i par + Apay + 2pn AU = 0.

Now, theorem 2 holds if 5; is a solution of
i0,81 = 37y — 8,82 = 33 (5.1)
and theorems 3 and 4 need that 5; and o, { = 1, 2, be solutions of

iB,s; = —3123; iB,o*l = 3120‘1
ia,Sg = 3%5‘2 ia;O’z = —3%0’2.

5.1. The DSI case
The DSI reduction appears when x; = &, x; = € R and
pi2z=Epy = p £ ==l VU, n, 1) e R

This implies the differential equations

30, U +elpl* =0 (5.2)
igp—Ap—2pAU =0, (5.3)
These equations are just the DSI in its defocusing, £ = 1, and focusing, £ = —1, cases.

The problem to tackle here is which data A;, 8; are suitable for this reduction. If the
complex linear spaces V; and Vs are furnished with scalar products and ¥ : V; — v
denotes the standard isomorphism generated by these scalar products, a possible solution to
this question is as follows.

Proposition 7. 1If

pr=bH B =¢eblH (5.4)
C=1 Hi = H (5.5)

then the functions defined in equation (2.7) satisfy

Plz = EP;] VU(E’ ,71 r) € Rz'
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Proof. Equations {5.1) hold by construction. On the other hand
¢ =141 (b1 @ b)) + £3;" (b2 @ B)IH
so that Hy = ¢t H, and He™' = (¢~} H. Moreover,
Py = bfﬂqa"!b_,- P = sbgﬁqa"bj
and hence
ph = (Bl He bt = bl ™V Hby = blHe™ by = epay
also PE = pjj, thus VU(E, n, 1) € RZ, O

The resuits in theorem 3 reduce to the DSI by applying proposition 7 and implies:

Theorem 3. Let 51(E, 1) (52(n, 1)) be a function taking values in the complex linear space
W, (W2) solution of

~ids1 = &) (ids2 = 8%s5)
and H € L{(W, @ W;) be a Hermitian operator, Define

¢ =1+ @ @sh+ea w@sh | H
and

=0+ 5® (SIH— aP).
where ¢3 € (W) @ Wa)* is such that {5, 52} = 1.

Then,
U=Indet®
det d
p= det d (5.6)

is a solution of equations (5.2) and (5.3).

Proof. The results follow immediately if we take into account the form of 5, =
(5;, —8;5;, .. .), choose adequately the Hermitian operator H and recall the contenis of
theorem 3 and proposition 7. ]

When W; are finite-dimensional, with dim W; = N, the expression in theorem 5 for p
is complemented with:

Proposition 8. Fix a basis in W, for i = 1, 2 and denote the components of 52 by (sz),. Let
&, be the matrix associated with ¢ when we replace the (N — 1 — r)th row by .s'f H. Then,
the function p given by equation (5.6) can be written as

ao' (s2)n det @,

det

Essentially the formula that appears in theorem 5 was obtained, by direct computation,
in Degasperis (1990} and Gilson and Nimmo (1991} (see also Gilson 1992). Observe
also that in Degasperis (1990) these solutions were derived for the first time within the
inverse scattering technique employed in Fokas and Santini (1989, 1990) and Santini (1990},
deseribing, in particular, the so-called gaussons. Here we have found a derivation of this

pz
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result from basic principles and this allows us to extend the result by including Wronskian-
type expressions. For this aim we need to introduce the Schur or heat polynomials, S5,

defined by
explkx + B =: Z Sp(x, DE".

nz0
We use the notation
8,8, 1) == Ss(—&,1t) Gn(n, t) 1= Sp(—m, —it).
For these coefficients we have the relations 3,5, = S, and 4,5, = BfS,,. We obtain also
the formulae

—3Gn(§,1) = G (6, 1) —18,6(¢, 1) = S, 1) (5.7)

—3Gn(n, 1) = Guu1 (1, 1) i8,6(n, 1) = 9,6 (n, £). (5.8)
Theorem 6. Let s; and H be as in theorem 5, with the additional condition

P75 (@)=0 n=1,....M

3275, (0) = 0 n=1..., M.

Take 0)(&,2) € (W, @ W)* and o2(n, 1) € (W2 @ Wa)*, solutions of equation (5.1) of the
form

o1(£,1) = (Gapy—1 &, 1), ..., Ga, (E, 1) D s1(E, 1) H

0'2(77, f) = 8[(6211’!1—] (f?; t), LR GMz (U, I))* & 52(’?; t)'rH]'
Here W,-, i =1, 2, are complex linear spaces with basis {¢} }HM;EI. Consider the operator W
defined as in theorem 4, define Py as the canonical projection Py : W, oW, dWoBW, —
W, & W, and write '

O =W+ Py + (=131 @051 @ 00) + (—1)"87 (0725, ® 02)

P=2+¢"7 @ (-3 o+ (=) o).

Then
U=lindetd
_ det
p= det ¢

is a solution of equations (5.2) and (5.3).

Proof. We need to apply proposition 7 to the results of theorem 4. Our framework is that
appearing in the proof of theorem 4. We first split b; as

bi=b®b;

with ; taking values in W; and b; in £ w,. Because of the particular structure of A; we
conclude

&b = —A1b,
{ 8,53 = —Aqb, (5.9
[ 5:(0) = ¢
[ 85by = —(B1)ous — Arby

8,02 = —(Badous — Agby (5.10)
[ b;(0) =0.



1724 F Guil and M Marias

From equations (5.9) we get
By = (Ga—1s -, G

When we express the sequence u; = (i;,g, 4:,1,...) in components, equations (3,10) give

r n
— > Gumemttipom F (~3) b0 m=0,...,M —1

=]
b].n =1 mMI
~ Gumomttin-m+ (=)o n =M
L ne=1
1 ]
— Y Gipmlizam + (—8) 20 n=0,..., M —1
m=1
b2.n =

M
= Gipomizpm + (~2)'b2e 02 M,

m=1

and the initial conditions
gy b10(0) =0 n
{ (=8)"01,0(0) = w1 p-m, nz M
3y b2,0(0) =0 n=0,..., M1
{ (—8,)"b2,0(0) = 12 nngy n
From propositton 6 it follows that
210 = (—8)Mb 820 = (=3,)"b,.

On the other hand 5 = 6;"]/1 and By = 8,’:‘=y2. The reduction to DSI is given

by proposition 7 as §; = bIH and B = sb%H. Now, taking 810 = (8)*s, and
bao = (3,)M2sy, and recalling formulae (5.7) and (5.8) one can easily deduce the result
stated. O

3.2. The DSl reduction

For the DSIi case we take x] = xp, VU = (U, U,) € R? where x; = z = (x + iy)/«/i,
x,y € R, and £p}, = p12 = p. The equations are now

AU +2ep*=0 (5.11)
i0,p — (82p — &1 p) —2p(82U — 32U) =0. (5.12)

Equations (5.11) and (5.12) constitute the DSII in its defocusing, € = 1, and focusing,
g = —1, cases.
The reduction can be realized once

VviEh=sy
which will be the case in this subsection. In %7 & 23 one has the e-permutation operator

P .U ->Ual
v @ v Py @w) =1 dey

which atlows us to formulate:
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Proposition 9. If

e; = Pe
Al =gPAP
Bl = 5T

where T € SL(U @ %) satisfies T~! = ¢T*, and
C=C|+PC1*T* CleLWaW, W)
then

Pi= EP;J
VU(x,y,1) € R2

1725

Proof. One can check that ¥j = ePin P, thus b} = P, and ¢* = ¢PpT. Therefore,

detp € R and VI takes real values. On the other hand

Ph = {85, (@*) B3 = (BT, 6T o7 P Py} = £p2y.

O

Now, by using theorem 3, we can give examples of solutions of the DSl equation, the

proof is as in the previous ones.

Theorem 7. Let T € SL(W; @ W3) be a linear operator over the complex linear space
W, & Wy with W; = 95, i = 1, 2, such that T—! = ¢T*. Let s(z, ) be a W;-valued solution

of
—ids = d2s

and take as o(z, 1) € (20 & 20)* a solution of

8,0 = 820,
Choose C € L{I0 & 20, W1) and define
¢ :=¢+ PH'T*
with
p=C+3 ' s®0)
and

= +Ps"@(c —c®)

with ¢(z, 2%, t) € (0 & 2W)* such that {5, Ps*) = 1.
Then,

U=Indetd
_det&)
p_detd)

is a solution of equations (5.11) and (5.12).

If 99 is finite dimensional an alternative expression for p is:

(5.13)
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Proposition 10. Suppose that in a given basis of 97, s has components s, and D, is the
matrix associated with ¢ obtained by replacing the (N -+ x)th row (N = dim 29) by o, then
p in theorem 7 can be expressed as

. 2. 5ndetd,
det &
Finally, we introduce Wronksian expressions. The proof is as in previous theorems,

p

Theorem 8. Take T € SL(W; © W1 & W2 @ Wa), such that T~! = gT*, where W; = 70
are isomorphic complex linear spaces and W;, i = 1, 2, are as in theorem 7. Choose s and
C as in theorem 7 and o (z, 1) € (D ® 20 S 20 & I)* a solution of equation (5.13). Given
a basis {e,}', of W, we define

W= Zen ® 6;‘10

p=W+C+8 ' (s®0)

and
&i=¢+ PP*T*
$ = - Pejy @ [e(@ o T) —8¥0].
Then,
U=In d?tq)
det P
P= det D

is a solution of equations (5.11) and (5.12).

The Wronskian expressions for solations of DSII with £ = 1 obtained in Freeman et af
(1990) are contained in theorem § when dim¥J =0 and T' = 1. The general Wronskian-
Grammian and Grammian determinant solution of the DS equation is to the authors’
knowledge entirely new. The connection between the solutions presented in Arkadiev et al
(19894, b) will be analysed elsewhere.
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