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Finite-rank constraints on linear flows and the 
DaveyStewartson equation 

Francisco Guil and Manuel Mafias? 
Departmento de Fisica Tedrica, Univenidad Complutense, E28040-Madrid, Spain 

Received 5 October 1994 

Abstract. Finite-rank constraints for the right-derivatives of w t a i n  automorphism solving 
the beat equation imply the Davey-Stewdon system. Solutions comprising Wronskian and 
Grammian determinants are found and the real reductions for the DaveyStewmon I and 
Dovey-Stewamon I1 are considered. 

1. Introduction 

In this work we develop a method for the construction of solutions of the two-component 
Kadomtsev-Petviashvili (W) or DaveyStewartson (DS) equation. We shall also treat its 
two real reductions DSI and DSII, in their focusing and defocusing cases which correspond 
to elliptic and hyperbolic second-order differential operators respectively. Generalizations 
to the multicomponent case are straightforward. 

The solutions in which we are interested can be described hnctionally in terms of the 
heat equation in one dimension with complex variables, which is replaced by the Schrdinger 
equation when dealing with the real reductions. Some of the solutions were obtained, 
apparently by direct computation in Freeman et al (1990), Hietarinta and Hirota (1990) 
and N m o  (1992), as a ‘double’ Wronskian for the DS system-those in Hietarinta and 
Hirota (1990) were reduced to the dromion solutions of the DSI equation-and in Gilson 
and Nimmo (1991) as a ‘double’ Grammian for the DSI equation, formed with solutions of 
the Schrodinger equation. In Degasperis (1990) the spectral analysis of Fokas and Santini 
(1989, 1990) and Santini (1990) was used to obtain, for the first time, the ‘double’ Grammian 

In Guil et a1 (1994) we were able to construct the Wronskian expressions for solutions of 
the KP equation through a dimensional reduction of a KP equation in an infinite dimensional 
space. The procedure described there reproduces in the infinite dimensional case the 
well known connection between the heat and Burgers equations. The same Hopf-Cole 
transformation puts, as in the Burgers case, the heat hierarchy in the group into the KP 
hierarchy in the corresponding Lie algebra. To obtain the scalar KP equation only, one 
selects the appropriate initial conditions. Besides Wronskians we have derived the solutions 
of the KP given by Grammian determinants in Mikae et al (1990), Nakamura (1989) and 
Zakharov and Shabat (1974) from this formulation. 

It is the purpose of this work to reproduce for the DS equation the construction given 
for the KP equation. To solve the easy part of the problem one takes as the starting point the 
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two-dimensional heat equation (or n-dimensional if one wants the n-component KP) subject 
to certain initial conditions (see equations (3.7)) which yield the desired DS system. The 
difficulty in reducing this to the DSI or DSII equations appears in selecting the correct initial 
conditions for these real cases. We have solved the problem for the solutions mentioned 
before, those given as ‘double’ Wronskians, ‘double’ Grammians or a combination of them 
(henceforth simply Wronskians and Grammians). The Wronskian-Grammian solutions for 
the DSII equation obtained in this paper are, to the authors’ knowledge, new. 

The organization and contents of the paper are as follows. In section 2 we describe 
the geometric origin of the initial conditions for the n-component KP equation, which is 
ultimately related to a problem of separation of variables. The connection of the DS system 
with the heat equation is given in section 3 where we obtain general formulae expressing 
its solutions as determinants or quotients of them. We derive, in section 4, solutions in 
the form of Grammian and Wronskian determinants and present finally, in section 5, an 
effective procedure to reduce these solutions to the DSI and DSU equations. 

2. Splitting the zero-curvature condition: the Darboux coefficients 

The integrable nonlinear equations we shall consider admit a simple description in terms of 
the theory of linear flows in linear spaces V .  

For a collection of operator-valued functions Mi (XI,. . . , x.) E L ( V )  depending on the 
n complex variables ( x i } i = ~ , , , , , ~  we define the linear flows 

i = I ,  ..., n 
ay - =M,* 
axi 

where W(xl, . . . , x, )  E V .  The compatibility conditions among them result in the zero- 
curvature equations 

(2.1) 

where a, = a/ax i ,  which are a set of nonlinear partial-differential equations for the operators 
Mi. On the other hand, given a family of linear operators Mi satisfying equations (2.1) one 
knows that locally there exists an automorphism @ ( X I , .  . . , x,) E G L ( V )  such that 

a jMj  - ajMi + M~ M~ - M ~ M ,  = o 

M( = a i @ .  @-I. (2.2) 

Equations (2.1) can be written as 

ajMj + MjMi = ajMi + MiMj 

from which we obtain a particular solution of (2.1) by imposing 

a j M j + M j M i = O  i f j .  

From equations (2.3) one deduces the compatibility conditions 

(aiaj  - ajai)iwk = o 
and consequently equations (2.3) form a closed system. 

For the automorphism @ we have 

Proposition 1. The collection of operators Mj = ai@ . *-I, i = 1,. . . , n, + ( x i , .  . . , x.) E 
GL(V) .  solves equation (2.3) if and only if 

@(XI, . . . 9 x n )  = @t(Xl)  t ... + (2.4) 
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Proof. Introducing the expression (2.2) for Mi in equation (2.3) one concludes 
a i a j @ = O  i # j  

the solution of which is given in the proposition. 0 

Thus, system (2.3) represents in L ( V )  the process of separation of variables in the goup 
G L ( V ) .  To proceed further we consider a linear splitting of V ,  

and we require that im M , ( x , , .  . . , x,) C Vi. Associated with this decomposition one has 
the representation 

v = v , c 3 " ' c 3 v "  

Mi = c M , j  
j=1 

where 
Mij = Mil4 : v, + K. 

Now, we can separate (2.3) into two subsystems, namely 

and 
aiMii + Mji Mi, = 0 i # j 

aiMjk + MjiMir = 0 
aiMjj + M ~ ~ M ~ ~  = 0 

i # j ,  i # k ,  j # k 
(2.5) 

i # j .  
Observe that equations (2.5) are invariant under the transformation Mii + A, + Mi;, 

Ai E L(Vi). Notice also that the @is can be taken with their images in V,. 
An interesting reduction of this system is obtained once the Mi, modulo the invariance 

cited in the above paragraph, are requested to belong to the left ideal of finite rank operators. 
The simplest case is rank one, if we let ei E V, be the vector expanding the one-dimensional 
image, we obtain the representation 

(2.6) 
where ai(x1. . . . , x , )  E V* is a linear functional over V .  For the functions 

(2.7) 
we have the following proposition. 
Proposition 2. Let pij be the functions defined in (2.7), then if (Mi] as given by 
equation (2.6) is a solution of (2.3) then 

{ 

Mi = Ai + ei @ ai 

p . '  ._ ( <, .- ui,ej) 

a k P i j  + pikpkj = 0 i ,  3 # k .  (2.8) 

Proof. 

its contraction with ej gives the desired result. 

From equations (2.3) and (2.6) it follows that 
akai + u i ~ a  + ptkak = o 

U 

The functions p i j  satisfy the equations defining the Darboux coefficients or rotation 
coefficients for an n-orthogonal system of curvilinear coordinates. Equations (2.8) are also 
the compatibility conditions for the linear system 

The coefficients hi give the diagonal metric of zero curvature dsZ = xi uih? dx:, uj E (izl). 
Equations (2.8) constitute a non-trivial system of equations obtained from a trivial one. 

namely equations (2.3). The non-trivial task is to find an automorphism, as in equation (2.4). 
with its right-derivatives constrained by the expression given in (2.6). 

ajhi + pijhj = 0. 
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3. The DaveyStewartson system: construction of solutions 

An interesting class of equations connected to equations (2.8) is represented by the 
symmetries associated with the Laplacian. 

In this section we take n = 2, thus we have only two coordinates x1,x2, a splitting 
V = V, fB V,, and A ,  (A*) a linear operator over VI (VZ). "'he functions PII. pz2, plz, pz, 
of (2.7) satisfy 

F Guil and M Man-as 

a l ~ z z  =a,~,, = - P ~ ~ P ~ ~  

pii = a,u (3.1) 

a,azu + P ~ ~ P ~ ~  = o. 

therefore pi, admits a potential function, say U ,  such that 

so that 

We can add an additional time parameter I by considering the symmetry 

at@ = w (3.2) 
where A := a: + 82" is the two-dimensional Laplacian. That is, f is a G L ( V )  valued 
solution of the two-dimensional heat equation, its right-derivatives being solutions of 

2 

alMi = A M ,  +~C(~,M,)M,. (3.3) 
j=l 

Now we show that this system is connected with the DS system. 

Theorem 1. Let @(xI, x2, t )  be a solution of equation (3.2) with its right-derivatives M I ,  Mz  
as in (2.6). Then, the functions p12. p21 and U defined in (2,7) and (3.1) satisfy 

(3.4) 
(3.5) 
(3.6) 

alazu + pI2pz1 = o 

a,pz1 + (a: - a b 1  + 2 ~ ~ ~ ( a :  - a;)u = 0. 
a,pI2 - (a: - a:)pI2 - 2pda:  - a:)u = o 

Proof. Taking into account the expression (2.6) from (3.3) one finds 

i = I ,  2 
2 

a,ai = aai + 27'((a,p,,)a, + (ajai)A,) 
j = l  

that, upon contraction with e, and with the definition of the potential U, gives the desired 
result. 0 

We now proceed to construct the general solution f to equation (3.2) and with right- 
derivatives as in (2.6). For this aim the following observation is particularly useful. (Just 
use ai @ = ,9, .) 

Proposition 3. The system of equations (3.2), (2.2) and (2.6) is equivalent to 

(3.7) 

where ,&(xi, t )  E V' depends only on the coordinate xi and satisfies 

a,&(xi.t) = a,ZPi(Xi,t). (3.8) 
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Now, define 

$&I, XZ. t) := exp [ A I X I  + A m  + (A:  + A;)t]  

and 

bj(xj,t) := @o(xl,~z,t)-'ei E Vi. 

Then we obtain the following proposition. 

Pmposirion 4. The solution to equations (3.2). (2.2) and (2.6) is given by 

* , = * O ' r p  

with an invertible operator 

PmoJ Equations (3.7) can be written as 

(a, - A M  = ei @pi 
where we have used equation (2.4). Therefore, 

ei = @ o , i ~ i  -I- (ai - Ai)-I(ei @pi) 

(3.9) 

(3.10) 

with $o,i = exp[Aixi + A f t ] .  Ci : V + Vi and (ai - Ai) - ]  stands for the operator 
(8, - Ai)-' = $o,ia;'@i!, we set C = CI + C, and @ = @I + p6.2 to get the desired 
result. 0 

We define 

e i j  := @ + ej 8 pi - ej 8 qj @ 
c. .- .- (0 + bj 8 pi - bj @ 6jrp 

where qJ , 8, ( X I  , X Z ,  f) E V" are such that 

( V j , e j ) = ( 6 j . b j ) = 1  j = 1 , 2 ,  

Note that for a given q, we can take S j  = qj$o and, if this is the case, then = @&j. 
Now, we can state the main result of this paper. 

Theorem 2. I f  (0, as given by equation (3.9), has a determinant then 

U = In det rp (3.11) 

(3.12) 

are a solution of equations (3.4), (3.5) and (3.6), 
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Proof. From the relation ai @ = one concludes 

and hence, if rp has a determinant, 
ei B ai = @da,rp. vl)@ 

aiu = pii  = Tr(airp. p-'). 
Then, up to an additive constant, we obtain for U the expression 

U = In det p. 

& j  = [ I  + ej 8 (ai - v j ) l @  

Since 

Cij = [ I  + bj 8 (Pip-' - S j ) l ~ ,  
their determinants are 

detEij = det[ 1 + ej @ (ai - qj)] dei @ = pjj det $ 
detrij = det[l + bj 8 (pjrp-' -8j)ldetp = pijdetv, 

from whence the expressions for pi2 and pzl follows. 0 

Notice that in equation (3.12) the computation of the inverse of v, is avoided by the use 
of determinants. This is an advantage of determinant-type expressions. 

4. Particular solutions of the DS system 

Concrete choices for V,  Ai. ei and pd give different sets of solutions to the DS system. 
In this section we will be concerned about two particular families of solutions. First, 
we extend the Grammian determinant-type formulae from Mikae et a[ (1990), Nakamura 
(1989) and Zakhamv and Shabat (1974) for solutions of the KP equation to the DS case, and 
obtain the same generalization for the solutions of the KP constructed in Chau et al (1992) 
encompassing Wronskians and Grammian determinants. The Wronskian solutions for the 
DS system, that are contained as examples in  the formulae given below. were obtained in 
Freeman et a1 (1990) and Nimmo (1992). For the KP case see Freeman and Nimmo (1983) 
and Satsuma (1979). 
Theorem 3. Denote by Wi, i = I ,  2, two linear spaces. let si(xi,t) E !Vi, i = I ,  2, be 
solutions of 

aisi = -a,2si 
chooseg(xi,r)  E (!VI@WW~)' suchthat ( g i , s i )  = 1 andIetu,(xj,t) E (W1@Wd*,f = 1.2, 
be solutions of 

2 a p i  = ai ui. 

@:= c+a;'(SIBu*)+a;I(sl@u*) 

4ij := cp + sj B (Uj - <j@). 

For any C E L( W1 fB Wz) we define 

and 

Then, 
U = In det Q 

__. . 
is a solution of equations (3.4), (3.5) and (3.6). 
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Proof. As V, ,  i = I ,  2, we take the space of Wi-valued sequences 

V,  = e ,  z w, fB w, f€J . . . . 
An element in Vi is of the form ( a n h a  with U. E W,. The shift operator Ai E L ( V i )  is 
defined as 

Ai(an)n>~ = (an+l)n>o 
and we take 

Ai = A i  i = 1.2. 
This choice implies that 

bi = (si. -aisi, a:si, . . .) 
where si takes values in Wi. This follows from the equation aibi = -Aibi. The evolution 
of bi: a& = -a% implies the same equation for si. 

For the pi's our choice is 

Bi((a,),>o f€J (b&o) = (oil I ad + (m. bo) 
where uij takes its values in W,? and, because pi satisfies (3.8), so does ut = oil @uiZ that 
takes values in (W, fB VV,Y. A proper C can be taken such that 

detrp=det@ 
det { i j  = det @ij  

and from theorem 2 we finally obtain the desired result. Here Si must be chosen in a similar 
0 

In the finite-dimensional case, dim Wi = Nj, if we fix two bases Bi in Wi for i = 1,2 
respectively, we can complete the above theorem as follows. Let (so", n = 0,. , . , N i -  1 be 
the components of si in the basis Bi. Define 07, n = 0, . . . , Nz - 1 (@;, n = 0,. . . , NI - 1)  
as the matrix obtained from that corresponding to Q by replacing the (NI + n - 1)th (nth) 
row by 51 (Q), then: 

Proposition 5. For the pij of theorem 3 one has the expressions 

way as that used for the pi, replacing ui by sr, 

Proof. Use the first formula of equation (3.12). D 

To include Wronskian-type expressions in the formulae stated previously we need the 
following observation. 

Proposition 6. The operator @ can be expressed as 
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Proof. From equation (3.10) we formally deduce 

F Cui1 and M Mafias 

@i = @o,ici + ( I  - Aiayl)-l(ei @a;'p,) 

$i = @ o , i ~ i + C A l e i @ a ~ " - ' ~ i .  
which can be written as 

n>O 

For any couple MI, M2 of natural numbers we have 

Now, the methods in the proof of proposition 4 can be applied to obtain the desired result. 0 

With this proposition at hand we are able to formulate the following theorem. 

Theorem 4. Let .%(xi, t) be as in theorem 3 and wi, i = 1,2, an Mi-dimensional linear 
space with basis {er):!'. Consider ui(xi, t )  E (VI @ WI @ w2 @ it$). as in theorem 3 
and introduce the map 

w :wl fI3 WI @W2@ w2 -+ WI @ w, 

w := C e; B a;ui. 
given by 

n=O, .... M,-1 
k 1 . Z  

Now, we define 
Q := w + c + a;' (si @ oi) + a;l(~, @ oi) 

Q.. .- Q - e!)-' @ (a, 
and 

Mi-1 M uj - ai '0,). I ' I  .- 
Then, 

U=lnde tO  
det Qjj 

Pi] = - det 0 
is a solution of equations (3.4). (3.5) and (3.6). 

Proof. For the linear space V; we take 

where wi is an Midimensional linear space with basis (e;]tz'. The operators Ai are 
defined by 

where iE = Et!;' ?&el, Xi is the shift operator in vi and U ;  E Bw,  is a constant sequence. 
Observe that ui = Aie? and that Ai acts on e , .  Thus gi(0) = AFei = ui E e ,  
and g i ( x i , t )  E e , .  Therefore, applying similar arguments as those used in the proof 
of theorem 3 we conclude that 

V ; = W i @ e e ,  

A t @ @  (an)n>o) =KiG@ (Madn2o+GOu i )  

gi = o @ (si, -aisi. a,%. . ..I. 
For the y i ,  we take yi that has as kernel those sequences in which the first component 
is identically zero. An appropriate choice for C is now enough to conclude the truth of the 

0 theorem (with the aid of theorem 2 and proposition 6). 
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There is an intermediate case between the two theorems in this section. Observe that in 
the theorem above MI ,  MZ are natural numbers, and therefore different from zero. The case 
when both are zero is considered in theorem 3. If MI > 0 but MZ = 0 then for pzl we use 
the expressions in theorem 4 (M = 02) and for p12 that of theorem 3 (with @I = a y y l ) .  

5. The reductions to DSI and osn 

In this section we modify our symmetry to 

ia,@ = (a; -a,')@. 

So that the DS system reads 

ala2u + P ~ ~ P ~ ~  = o 
iatplz - ~p~~ - 2 p I z ~ u  = o 
~ & P Z I  + APZI + 2pz1AU = 0. 

Now, theorem 2 holds if p; is a solution of 

i a , h  = a:pI - ia,& = a:p2 

and theorems 3 and 4 need that si and q, i = 1,2, be solutions of 
Z 

2 
ia,sl = -a:s, 
ia,sz = a,'$, 

ia,q = a, 
iaru2 = -a2u2. 

5. I .  The DSI case 

The DSI reduction appears when XI = f, xz = q E R and 

plz = Ep;] =: p E = f l  V U ( ( ,  q ,  t )  E R2. 

This implies the differential equations 

a , a p  + ~ 1 ~ 1 ~  = o (5.2) 
ia,p - AP - 2pAU = 0. (5.3) 

These equations are just the DSI in its defocusing, E = 1, and focusing, E = -1, cases. 
The problem to tackle here is which data Ai ,  pi are suitable for this reduction. If the 

complex linear spaces VI and V2 are furnished with scalar products and t : -+ Vy 
denotes the standard isomorphism generated by these scalar products, a possible solution to 
this question is as follows. 

Proposition 7. If 

f l ~ = b l H  & = ~ b l H  (5.4) 
c =  1 H i  = H (5.5) 

PI2 = EP;] 

then the functions defined in equation (2.7) satisfy 

V U ( f ,  q. t )  E wz. 
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Proof. Equations (5.1) hold by construction. On the other hand 

9 = 1 + [ac'(bi @ b!) + &a;l(bz @ bJ) lH  

F Guil and M Marim 

so that H q  = q t H ,  and Hq-'  = (q - ' ) tH .  Moreover, 

plj  = b lHq- 'b j  p2j =&biHq- 'b j  

and hence 

pT2 = (bIHq-'bz)' = b$(p-')'Hbl = b$Hp-'bl = Ep21 

also p;, = pjj,  thus V U ( t , t l ,  t)  E R2. 0 

The results in theorem 3 reduce to the DSI by applying proposition 7 and implies: 

Theorem 5. Let SI (e, t)  ( ~ ( 7 7 ,  t ) )  be a function a i n g  values in the complex linear space 
WI (WZ) solution of 

-ia,sl = a;sl (ia,sz = a,@ 2 

and H E L(W1 @ W2) be a Hermitian operator. Define 

@:= I + ~ , - 1 ( s , ~ s t ) + E a , ' ( s z ~ s ~ ) ] H  

and 

6 := @ + sz @ (Sl'H - a@). 
where 52 E (WI @ W2)* is such that (5z .s~ )  = I .  

Then, 

U = l n d e t Q  
det 6 p = -  
det @ 

is a solution of equations (5.2) and (5.3). 

Proof. The results follow immediately if we take into account the form of bi = 
(si, -ais!. . . .), choose adequately the Hermitian operator H and recall the contents of 

0 

When Wi are finite-dimensional, with dim Wi = Ni, the expression in theorem 5 for p 
is complemented with: 

Proposition 8. Fix a basis in Wi for i = 1,2 and denote the components of sz by (&. Let 
Qn be the matrix associated with @ when we replace the (NI - I -n)th row by s / H .  Then, 
the function p given by equation (5.6) can be written as 

theorem 3 and proposition 7.  

Essentially the formula that appears in theorem 5 was obtained, by direct computation, 
in Degasperis (1990) and Gilson and Nimmo (1991) (see also Gilson 1992). Observe 
also that in Degasperis (1990) these solutions were derived for the first time within the 
inverse scattering technique employed in Fokas and Santini (1989, 1990) and Santini (1990). 
describing, in  particular, the so-called gaussons. Here we have found a derivation of this 
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result from basic principles and this allows us to extend the result by including Wronskian- 
type expressions. For this aim we need to introduce the Schur or heat polynomials, S,, 
defined by 

exp(kx + k 2 t )  =: cS,,(x. t )k".  
n>0 

We use the notation 

Gn(<, t) := Sa(-:, it) 
For these coefficients we have the relations a,& = 
the formulae 

E&, t )  := Sn(-q,  -it). 
and a,S, = 3:s". We obtain also 

(5.7) 

(5.8) 

--atEn(t,t) = ~ " - ~ ( t ,  t) 

-an6,(tl, t )  = G ~ - ~ ( v ,  t) 

a:MI-nSl (0) = o 
a;M1-nsz(o) = o 

- iatG(.$, t )  = a:G((, t) 

i a t G b ,  t )  = a;m, t ) .  
Theorem 6. Let si and H be as in theorem 5 ,  with the additional condition 

n = 1,  . . . , M] 
n = I . .  . . , M ~ .  

Take q(t, t )  E (wl fB WI)* and UZ(V, t )  E (w2 fB Wz)*, solutions of equation (5.1) of the 
form 

u18 ,  t )  = (GzM,-I(~, f), ..., G M ~ E ,  f))* @si(t, t) 'H 
oi(tl, 0 = ~(GZM,-I(S, t ) .  . . . , G M ~ ( v ,  t ) )*  fBsz(~, t)+HI. 

Here mi, i = 1.2, are complex linear spaces with basis [e:}:;'. Cznsider the operator W 
defined as in theorem 4, define Pw as the canonical projection Pw : W1 fB WI fBwzfB WZ -+ 
WI @ W2, and write 

r p = w + ~ ~ + ( - i ) ~ l a ;  1 (a, ZM, ~ ~ ~ ~ ~ ) + ( - i ) ~ ~ a ; ~ ( a , 2 ~ ~ s ~ ~ ~ ~ )  

6 = rp + e,"'-' B ( ( -a,ploz + (-at)%,). 
Then 

U = In det Q 
det 6 p = -  
det Q 

is a solution of equations (5.2) and (5.3), 

Pmof. We need to apply proposition I to the results of theorem 4. Our framework is that 
appearing in the proof of theorem 4. We first split bi as 

with zi taking values in wi and bi in e , .  Because of the particular structure of A i  we 
conclude 

bi = bi fB bi 

(5.9) 

(5.10) 
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From equations (5.9) we get 
- 
b, = (GM,-I,  ..., 61)'. 

When we express the sequence ui = (ui,o, u i , ~ ,  . . .) in components, equations (5.10) give 

- GY,-m~l.n-m + ( - a , ~ b ~ , ~  n = 0,. . . , M~ - 1 
m=1 

b 1 . n ~  

- G M ~ - ~ u I . ~ - ~  + (-8~Yb1,o n 2 MI 

- ~ , w ~ - , u z , ~ - ~  + (-a,,Ybz,o 

m=1 

n = 0,. . . , MZ - I 
m=I 

- GM2--muZ,n-m (-a?)nbz.o n 2 Mz 

1 :  
l b2.n = 

m= I 

n =0, ... , M I  - 1 

II 2 MI 

n = O ,  ..., Mz- 1 

n 2 Mz. 

and the initial conditions 

a;bi.o(O) = 0 

(-t$Ybi,o(O) = U I , " - M >  

a;bz,o(O) = 0 

(-ap)'bz,o(0) = Q+-M, 

I 
I 

From proposition 6 it follows that 

gi,o = (-ac)M'bi 82.0 = (-an)M*bz. 

On the other hand j31 = a y y l  and = apm. The reduction to DSI is given 
by proposition 7 as j31 = bjH and j3z = &bJH. Now, taking b l , ~  = (8t)M1sl and 
bz.0 = (a,)M1sz, and recalling formulae (5.7) and (5.8) one can easily deduce the result 
stated. 0 

5.2. The DSN reduction 

For the DSIl case we take x ;  = x2, VU = ( U x ,  UJ E W2 where X I  = z = ( x  + iy)/fi ,  
x ,  y E R, and &p& = p12 = p.  The equations are now 

(5.11) 
(5.12) 

Equations (5.11) and (5.12) constitute the DSII in its defocusing. E = 1, and focusing, 

The reduction can be realized once 
& = -1, CaseS. 

V] z v, 1 D3 

which will be the case in this subsection. In QJ Q QJ one has the &-permutation operator 

P :mea+ Doer0 
U1 e U2 H P(v1 e U?) := U2 e &U1 

which allows us to formulate: 
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Proposition 9. If 

ea = Pel 
A; = &PA1 P 

0; = BT 
where T E SL(D @ 93) satisfies T-' = ET', and 

C = Ci + PC;T* Ci E L ( D @  93, V I )  

then 

PI2 = EP;] 
V U @ ,  y, t )  E R2. 

Proof. 
det 9 E R and VU takes real values. On the other hand 

One can check that I/J: = &P$oP, thus b; = Pbl, and q* = & P p T .  Therefore, 

pyz = (p;, (p*)-ib;) = (&T, &T-'q- 'P- 'Pbl )  = &P2[ .  

U 

Now, by using theorem 3, we can give examples of solutions of the DSll equation, the 
proof is as in the previous ones. 

Theorem 7. Let T E SL(W1 @ W2) be a linear operator over the complex linear space 
Wi @ WZ with Wi Z !D3, i = 1,2,  such that T-' = ET'. Let s(z. t )  be a WI-valued solution 
of 

-ia,s = a:. 
and take as u(z, f )  E (ID @ a solution of 

i8,u = a:u. 

Choose C E L(!D3 @ !2D, WI) and define 

@ := q5 + Pq5*T* 

with 

q5 := c + a;l(S@u) 

&:= o+ P S * @ ( U  - 5-Q) 

and 

with ~ ( z ,  z*, I )  E (!D3 @ D)* such that (5. PZ) = 1. 
Then, 

U=Indet@ 
det 6 p = -  
det 0 

is a solution of equations (5.1 1) and (5.12). 

If is finite dimensional an alternative expression for p is: 

(5.13) 
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Proposition IO.  Suppose that in a given basis of D, s has components s, and 0" is the 
matrix associated with 0 obtained by replacing the (N+n)th row (N = dimcm) by U, then 
p in theorem 7 can be expressed as 

F Guil and M Mdas 

Finally, we introduce Wronksian expressions. The proof is as in previous theorems, 

Theorem 8. Take T E SL(wl @ WI @ w2 @ Wz), such that T-' = ET', where wt 2 
are isomorphic complex linear spaces and \Vi, i = 1.2, are as in theorem 7. Choose s and 
Cas in theorem 7 and u(z,f) E (BC+Z?@%@cm)* a solution of equation (5.13). Given 
a basis [e,]:, of VI we define 

w := Zen B a;-'0 

4 := w + c + a;'($ B U) 
n 

and 
0 := 4 + P@"T* 
6 := 0 - PeL B [&(a;-br)" -a,".] 

Then, 

U = I n d e t 0  
det 6 p = -  
det 0 

is a solution of equations (5.1 1) and (5.12). 

The Wronskian expressions for solutions of DSll with & = 1 obtained in Freeman et a1 
(1990) are contained in theorem 8 when d i m m  = 0 and T = 1. The general Wronskan- 
Grammian and Grammian determinant solution of the DSII equation is to the authors' 
knowledge entirely new. The connection between the solutions presented in Arkadiev et a1 
(1989a, b) will be analysed elsewhere. 
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